Ana səhifə

Natural Triterpenoids as Renewable Nanos


Yüklə 227.64 Kb.
tarix03.05.2016
ölçüsü227.64 Kb.



Natural Triterpenoids as Renewable Nanos
Braja Gopal Bag1*, Chhabi Garai1, Rakhi Majumdar1, Michel Laguerre2*
1Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, WB, India, E-mail: braja@mail.vidyasagar.ac.in

2 Institut Européen de Chimie et Biologie (IECB), CBMN, Université de Bordeaux-CNRS, UMR 5248, 2 rue Robert Escarpit, F-33607 Pessac Cedex, France, Email: m.laguerre@iecb.u-bordeaux.fr


Table S2: Parameters for Monocyclic triterpenoids


Alicyclic System

Distances

(nm)

Energies

(kcal/mol)




Length C3-C30

Cyclic part

C3-C6

Side chain

C5-C30

HF

MMXE

3

2.198

0.284

1.965

-69.36

31.507

4

2.201

0.286

1.964

-70.15

29.378



Table S1: Parameters for acyclic triterpenoids


Acyclic System

Distances

(nm)

Energies

(kcal/mol)




Length C1-C24

Cyclic part

Side chain

HF

MMXE

1

2.673

NA

2.673

-15.97

21.560

2

2.673

NA

2.673

-42.54

26.836




Table S3: Parameters for Bicyclic triterpenoids


Alicyclic System

Distances

(nm)

Energies

(kcal/mol)




Length C3-C30

Cyclic part

C3-C8

Side chain

C9-C30

HF

MMXE

5

1.865

0.525

1.565

-79.95

42.294

6

1.844

0.522

1.526

-82.59

40.992

7

1.841

0.536

1.527

-145.47

49.536

8

1.845

0.522

1.526

-43.60

39.451

9

1.865

0.525

1.565

-40.95

40.761

10

1.840

0.536

1.527

-106.50

47.980





Table S4: Parameters for Tricyclic (6-6-5) triterpenoids


Alicyclic System

Distances

(nm)

Energies

(kcal/mol)




Length C3-C30

Cyclic part

C3-C12

Side chain

C13-C30

HF

MMXE

11

1.627

0.669

1.121

-86.49

58.474

12

1.721

0.666

1.091

-84.64

62.064

13

1.627

0.670

1.121

-47.42

57.007

14

1.403

0.669

1.082

-47.90

56.525

15

1.759

0.666

1.160

-57.77

47.289

16

1.721

0.661

1.109

-60.01

45.452






Table S5: Parameters for Tetracyclic (6-6-6-5) triterpenoids


Alicyclic System

Distances

(nm)

Energies

(kcal/mol)




Length C3-C26

Cyclic part

C3-C16

Side chain

C17-C26

HF

MMXE

17

1.482

0.909

0.618

-126.39

73.525

18

1.294(C3-C27)

0.911

0.719

-57.15

70.001

19

1.282

0.827

0.508

-101.76

67.736

20

1.561

0.896

0.699

-102.94

65.370

21

1.538

0.864

0.699

-108.01

60.702

22

1.506

0.856

0.697

-98.30

70.012

23

1.554

0.889

0.711

-106.75

62.747






Table S6: Parameters for Tetracyclic (6-6-6-6) triterpenoids


Alicyclic System

Distances

(nm)

Energies

(kcal/mol)




Length C3-C30

Cyclic part

C3-C17

Side chain

C17-C30

HF

MMXE

24

1.556

0.959

0.616

-106.17

62.925

25

1.284

0.948

0.620

-105.84

77.005

26

1.584

0.960

0.644

-66.39

62.171

27

1.277 (C3-C-29)

0.957

0.619

-65.03

63.605

28

1.276

0.940

0.620

-59.70

68.860





Table S7: Parameters for Pentacyclic (6-6-6-6-5) triterpenoids


Alicyclic System

Distances

(nm)

Energies

(kcal/mol)




Length C3-C30

Cyclic part

C3-C20

Side chain

C17-C30

HF

MMXE

29

1.180

1.088

0.263

-111.94

78.311

30

1.200

1.025

0.265 (C17-C29)

-108.15

82.884




Length C3-C30

Cyclic part

C3-C20

Side chain

C21-C30







31

1.275

1.116

0.257

-100.05

90.357

32

1.327 (C3-C29)

1.116

0.260

-104.89

85.511

33

1.443

1.115

0.353

-103.41

84.296

34

1.333

1.110

0.252

-115.26

76.960

35

1.216

1.047

0.260 (C17-C29)

-177.28

85.887

36

1.357

1.116

0.255

-66.45

83.421

37

1.350

1.115

0.252 (C17-C29)

-66.70

85.684




Length

(C3-C30)

Cyclic part

(C3-C21)

Side chain

(C19-C30)

HF

MMXE

38

1.090 (C3-C21)

1.090

0.264

-101.90

88.506

39

1.113 (C3-C21)

1.113

0.260

-71.48

78.390

40

1.130

1.117

0.261 (C19-C29)

-137.56

85.069

41

1.113 (C3-C21)

1.113

0.255

-67.28

82.587





Table S8: Parameters for Pentacyclic (6-6-6-6-6) triterpenoids


Alicyclic System

Energies

(kcal/mol)




Length

C3-C30

Cyclic part

C3-C21

HF

MMXE

42

1.150 (C3-C21)

1.150

-121.07

70.122

43

1.179

1.159

-121.05

71.242

44

1.149

1.136

-120.42

71.473

45

1.182(C3-C29)

1.151

-113.22

77.885

46

1.139 (C3-C21)

1.139

-169.45

94.583

47

1.177

1.076

-106.07

85.824

48

1.157

1.096

-110.52

81.770

49

1.145

1.104

-107.53

84.361

50

1.176

1.149

-111.40

79.635

51

1.124

1.016

-106.51

84.918

52

1.126

1.038

-101.19

89.840

53

1.202

1.176

-173.79

87.687

54

1.150 (C3-C21)

1.150

-82.03

68.622

55

1.217

1.172

-77.63

73.577

56

1.150

1.137

-81.79

69.572

57

1.183 (C3-C29)

1.152

-74.21

76.365

58

1.179

1.078

-67.30

84.063

59

1.154

1.144

-278.57

69.948

60

1.160

1.141

-281.13

66.524






Figure S1: A schematic representation of the variation of the lengths of the triterpenoids with the number of the fused rings. Squalene is 2.67 nm long and the backbone of the rigid pentacyclic triterpenoid is 1.09 nm long. With increase in the number of the fused rings, rigidification of the triterpenoids are observed.

Table S9: number of conformers and clusters


Compound

Conformers number

Clusters number

1

10000+

-

2

10000+

-

3

6966




4

7754




5

1214

3

6

1856

5

7

1807

3

8

1638

5

9

1118

5

10

1854

1

11

790

7

12

461

4

13

591

4

14

709

5

15

674

5

16

1164

4

17

90

2

18

70

5

19

122

2

20

47

10

21

50

2

22

41

3

23

55

3

24

36

4

25

12

2

26

28

4

27

13

6

28

13

5

29

12

4

30

4

2

31

6

2

32

8

1

33

16

1

34

5

2

35

14

2

36

8

2

37

2

2

38

6

1

39

4

2

40

7

2

41

4

2

42

4

2

43

3

2

44

3

2

45

5

3

46

29

2

47

6

4

48

5

3

49

5

3

50

8

4

51

2

1

52

2

1

53

3

1

54

4

2

55

2

2

56

3

3

57

5

3

58

4

3

59

6

2

60

9

1
Acyclic triterpenes

Squalene 1, the precursor of naturally occurring triterpenes is the major component of olive oil.1,2 According to the biogenetic isoprene rule, all the triterpeoids are synthesized from squalene 1 or oxido-squalene 2. Both the molecules are flexible and the lengths of these two triterpenoids have been calculated to be 2.673 nm.



Monocyclic triterpenes

Monocyclic triterpenes camelliol C 3 and achilleol A 4 were isolated from plants Achillea odorata and Camellia sasanqua respectively.3 Both the molecules are flexible and are 2.20 nm long.



Bicyclic triterpenes

Bicyclic triterpenes polypoda-8(26),13,17,21-tetraene-3-ol 5 and polypoda-7,13,17,21-tetraene-3-ol 6 were isolated from Cratoxylum cochinchinense.4 Polypoda-13,17,21-triene-3,8-diol 7 was obtained from Pistacia.5 Polypoda-7,13,17,21-tetraene 8 and polypoda-8(26),13,17,21-tetraene 9 were isolated from the fern genus Polystichum.6 Polypoda-13,17,21-triene-8-ol 10 was obtained from the fern Polypodiodes.7 Because of the trans fusion at the ring junction, the bicyclic naturally occurring triterpenes are rigid. The lengths of the bicyclic triterpenoids are 1.84 – 1.87 nm. The cyclic rigid part are 0.52 – 0.54 nm long and flexible side chains are 1.53 – 1.57 nm long.


Tricyclic triterpenes (6-6-5)

Malabarica-14(27),17,21-trien-3-ol 11 was isolated from Pyrethrum Santolinoides.8 The tricyclic triterpene 12 was isolated from the marine sponge Stelletta sp.9 13a-14(27),17,21-malabaricatriene 13 and 13b-14(27),17,21-malabaricatriene 14 were isolated from fern Lemmaphyllum.10 7,17,21-podiodatriene 15 and 8,17,21-podiodatriene 16 were isolated from Polypodiodes.11 These six tricyclic triterpenes are 1.40 – 1.76 nm long with rigid cyclic parts of 0.66 – 0.67 nm and the flexible side chain of 1.08 – 1.16 nm.


Tetracyclic triterpenes (6-6-6-5)

20S-Dammar-24-en-20-ol 17 was isolated from fern Pyrrosia lingua.12 Dammara-20,24-diene 18 was isolated from Lemmaphyllum microphyllum var obovatum.13 Protosta-13(17),24-dien-3-ol 19 was isolated from fungus Cephalosporium cearulens.14 Butyrospermol 20,15 Euphol 21,16 Boeticol 22,17 dammara-13(17),24-dien-3-ol 2318 were isolated from genus Euphorbia. The length of these seven tetracyclic triterpenoids are 1.28 – 1.56 nm long with rigid cyclic parts of 0.83 – 0.91 nm and flexible side chains of 0.51 – 0.71 nm.


Tetracyclic triterpenes (6-6-6-6)

Bacchara-12,21-dien-3-ol 24 was isolated from seeds of Glycinemax.19 Shionone 25 was isolated from the roots of Aster tataricus.20 Three tetracyclic 6-6-6-6 C30H50 natural products, 12,21-baccharadiene 26, 7,21-lemmaphylladiene 27, and 3,21-shionadiene 28 were isolated from the fern genus Lemmaphyllum.Error: Reference source not found These five tetracyclic triterpenoids are 1.28 – 1.58 long with rigid cyclic parts of 0.94 - 0.96 nm and flexible side chains of 0.62 – 0.64 nm.


Pentacyclic triterpenoids (6-6-6-6-5)

Triterpene alcohols D-friedomadeir-14-en-3-ol 29 and D:C-friedomadeir-7-en-3-ol 30 were found in Euphorbia mellifera.21 Hopenol B 31 was isolated from Euphorbia supina22 Moretenol 32 was isolated from Ficus macrophylla desf.23 Leptadenol 33 was isolated from Leptadenia pyrotechnica,24 17(21)-hopenol 34 was isolated from Quercus championi of Hong Kong. 25 3,18-neohopanediol 35 was isolated from Alangium lamarckii.26 Diploptene 36 was isolated from Dryopteris erassirhizoma.27 Hopene A 37 was isolated from Pseudoscleropodium purum and Davallia mariesii.28 The catmint metabolite nepehinol 38 was isolated from Nepeta hindustana..29 20(29)-lupene 39 and 19b-20(29)-lupene 40 were isolated from Lemmaphyllum microphyllum varieties.30 20-lupanol 41 was isolated from Polypodiodes.31 All the these pentacyclic triterpenoids are 1.09 – 1.44 nm long with rigid cyclic parts of 1.03 - 1.12 nm and side chains of 0.26 – 0.35 nm.


Pentacyclic triterpenoids (6-6-6-6-6)

Germanicol 42 was isolated from Marsypianthes chamaedrys.32 -amyrin 43 was isolated from Gymnosporia montana.33 ß-amyrin 44 was isolated from Protium heptaphyllum.34 Taraxerol 45 was isolated from Terminalia glabrescens.35 3,14-Taraxeranediol 46 was isolated from the stems of Lithocarpus cornea.36 Multifluorenol 47 was isolated from Gelonium multiflorum37 and isomultifluorenol 48 was isolated from Pelargonium hortorum.,38 Walsurenol 49 was isolated from Walsura tubulata.39 α-amyrin 50 was isolated from Trattinnickia burserifolia.40 Isobauerenol 51 was isolated from Evodia franxinifolia,41 Bauerenol 52 was isolated from the wood and leaves of Elingamita johnsonii,42 3,21-gammaceranediol 53 was isolated from the stem bark of Abies veitchii,43 18-oleanene 54, 20-taraxastene 55, 12-oleanene 56, 14-taraxerene 57 and 7-multifluoorene 58 were isolated from Polypodium niponicum and P. formosanum. 44 Arjunolic acid 59 and, asiatic acid 60 were isolated as a mixture from Terminalia arjuna.45 All these pentacyclic triterpenoids are 1.12 – 1.22 nm long with rigid backbones.



References and Notes:

1. Guil-Guerrero JL, García-Maroto F, Campra-Madrid P, Gómez-Mercado F (2000) Phytochemistry 54:525-529.

2. Newmark HL (1997) Cancer Epidemology, Biomarkers and Prevention 6:1101.

3. (a) Barrero AF, Alvarez-Manzaneda EJ, Alvarez-Manzaneda R (1989) Tetrahedron Lett 30:3351–3352; (b) Akihisa T, Arai K, Kimura Y, Koike K, WCMC Kokke, Shibata T, Nikaido T (1999) J Nat Prod 62:265–268; (c) Matsuda SPT, Darr LB, Hart EA, Herrera JBR, McCann KE, Meyer MM, Pang J, Schepmann HG (2000) Org Lett 2:2261–2263; (d) Joubert BM, Hua L, Matsuda SPT Org Lett (2000) 2:339–341; (e) Meyer MM, Xu R, Matsuda SPT (2002) Org Lett 4:1395–1398; (f) Segura MJR, Lodeiro S, Meyer MM, Patel AJ, Matsuda SPT (2002) Org Lett 4:4459–4462.

4. (a) Bennett GJ, Harrison LJ, Sia GL, Sim KY (1993) Phytochemistry 32:1245–1251; (b) Nguyen LHD, Harrison LJ (1998) Phytochemistry 50:471– 476.

5. Boar RB, Couchman LA, Jaques AJ, Perkins MJ (1984) J Am Chem Soc 106:2476–2477.

6. Shiojima K, Arai Y, Masuda K, Kamada T, Ageta H, Tetrahedron Lett (1983) 24:5733–5736.

7. Arai Y, Hirohara M, Ageta H, Hsu HY (1992) Tetrahedron Lett 33:1325–1328.

8. Jakupovic J, Eid F, Bohlmann F, El-Dahmy S (1987) Phytochemistry 26:1536–1538.

9. McCabe T, Clardy J, Minale L, Pizza C, Zollo F, Riccio R (1982) Tetrahedron Lett 23:3307–3310.

10. Masuda K, Shiojima K, Ageta H (1989) Chem Pharm Bull 37:1140–1142.

11. Arai Y, Hirohara M, Ageta H (1989) 30:7209–7212.

12. Yamashita H, Masuda K, Kobayashi T, Ageta H, Shiojima K (1998) Phytochemistry 49:2461–2466.

13. Masuda K, Shiojima K, Ageta H (1983) Chem Pharm Bull 31:2530–2533.

14. Hattori H, Igarashi H, Iwasaki S, Okuda S, Tetrahedron Lett (1969) 13:1023–1026.

15. Irvine DS, Lawrie W, McNab AS, Spring FS (1956) J Chem Soc 2029–2033.

16. Arigoni D, Viterbo R, Dünnenberger M, Jeger O, Ruzicka L (1954) Helv Chim Acta 37:2306– 2322.

17. Ferreira MJU, Ascenso JR, Tavares OS (1995) J Nat Prod 58:275– 279.

18. Mata R, Rodriguez V, Pereda-Miranda R, Bye R, Linares E (1991) Phytochemistry 30:3822–3823.

19. Akihisa T, Kimura Y, Tamura T (1994) Phytochemistry 37:1413–1415.

20. Akihisa T, Kimura Y, Tai T, Arai K (1999) Chem Pharm Bull 47:1161-1163.

21. Ferreira MJU, Lobo AM, O’Mahoney CA, Williams DJ, Wyler H (1991) Helv Chim Acta 74:1329–1338.

22. Matsunaga S, Morita R (1983) Phytochemistry 22:605–606.

23. Galbraith MN, Miller CJ, Rowson JWL, Ritchie E, Shannon JS, Taylor WC (1965) Aust J Chem 18:226–239.

24. Noor F, Ahmed A, Imtiazuddin SM, Khan B (1993) Phytochemistry 32: 211–212.

25. Arthur HR, Hui WH, Lam CN, Szeto SK (1964) Aust J Chem 17, 697–700.

26. Achari B, Pal A, Pakrashi SC (1975) Tetrahedron Lett 4275–4278.

27. Ageta H, Iwata K, Yonezawa K (1963) Chem Pharm Bull 11:408–409.

28. (a) Marsili A, Morelli I, Iori AM (1971) Phytochemistry 10:432–433; (b) Shiojima K, Ageta H (1990) Chem Pharm Bull 38:347–349.

29. Ahmad VU, Bano S, Vali FV (1985) Planta Med 521–523.

30. Ageta H, Shiojima K, Masuda K (1982) Chem Pharm Bull 30:2272–2274.

31. Hirohara M, Ono M, Arai Y, Masuda K, Shiojima K, Ageta H, (2000) Nat Med (Tokyo) 54:186–189.

32. de Sousa Menezes F, Borsatto AS, Pereira NA, de Abreu Matos FJ, Coelho Kaplan MA, (1998) Phytochemistry 48:323 – 325.

33. De S, Bhaskar GC (1993) Ind J Pharm Sc 55:234 – 235.

34. Oliveira A, Chaves MH, Almeida FRC, Lima RCP Jr, Silva RM, Maia JL, Brito GAAC, Santos FA, Rao VS. (2005) J Ethnopharmacol 98:103-8.

35. Garcez FR, Garcez WS, Miguel DLS, Serea AAT, Prado FC (2003) J Braz Chem Soc 14:461-465 .

36. Hui WH, Li MM (1976) J Chem Soc Perkin Trans 1:23–30.

37. (a) Sengupta P, Khastgir HN (1963) Tetrahedron 19:123–132; (b) Johns SR, Lambertok JA, Price JR (1970) Aust J Chem 23:1283-4.

38. Aexel RT, Ramsey RB, Nicholas HJ (1972) Phytochemistry 11:2353–2354.

39. Chatterjee A, Kundu AB, Chakraborty T, Chandrasekaran S (1968) Chem Commun 418–419.

40. Lima MdaP, Braga PAdeC, Macedo ML da Silva MFdasGF, Ferreira AG, Fernandes JB, Vieira PC (2004) J Braz Chem Soc 15:385-394.

41. Talapatra SK, Sengupta S, Talapatra B, Hook F (1968) Tetrahedron Lett 5963–5968.

42. Cambie RC, Raharjo AXF, Rutledge PS, Woodgate PD (1993) New Zealand of Botany 31:425 – 426.

43. Tanaka R, Matsunaga S (1992) Phytochemistry 31, 3535–3539.

44. Ageta H, Arai Y (1983) Phytochemistry 22:1801–1808.

45. Bag BG, Dey PP, Dinda SK, Sheldrick WS, Oppel IM (2008) Beil J Org Chem 4(24):1-5.


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©anasahife.org 2016
rəhbərliyinə müraciət